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a b s t r a c t

In hyperspectral analysis, PLS-discriminant analysis (PLS-DA) is being increasingly used in conjunction
with pure spectra where it is often referred to as PLS-Classification (PLS-Class). PLS-Class has been pre-
sented as a novel approach making it possible to obtain qualitative information about the distribution
of the compounds in each pixel using little a priori knowledge about the image (only the pure spectrum
vailable online 3 March 2009
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of each compound is needed). In this short note it is shown that the PLS-Class model is the same as a
straightforward classical least squares (CLS) model and it is highlighted that it is more appropriate to view
this approach as CLS rather than PLS-DA. A real example illustrates the results of applying both PLS-Class
and CLS.

© 2009 Elsevier B.V. All rights reserved.
LS-Classification
LS-Class

. Introduction

The powerful combination of hyperspectral images and mul-
ivariate analysis has not been overlooked by the pharmaceutical
ndustry and the number of pharmaceutical applications has
ncreased significantly the past few years (Gowen et al., 2007). One
f the major challenges is selecting the appropriate data analysis
ethodology for extracting desired information from hyperspec-

ral images. In hyperspectral images, a high-resolution spectrum
s obtained for each pixel and for example, principal compo-
ent analysis (PCA) (Amigo et al., 2008; Kohler et al., 2007) has
een used for unsupervised pixel classification, multivariate curve
esolution—alternating least squares (MCR-ALS) (Amigo and Ravn,
009; de Juan et al., 2004) has been used for chemical mapping and

nterpretation of images, and partial least squares (PLS) regression
as been used for quantification (Ravn et al., 2008).

PLS-discriminant analysis (PLS-DA) (Chevallier et al., 2006) is
eing increasingly used in conjunction with pure spectra where it
s often referred to as PLS-Classification (PLS-Class) or ‘PLS2 using
library of pure component spectra’ (see, for example references
larke, 2004; Furukawa et al., 2007; Henson and Zhang, 2006;
yon et al., 2002; Ma and Anderson, 2008; Weiyong et al., 2008;

∗ Corresponding author.
E-mail address: rb@life.ku.dk (R. Bro).

378-5173/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2009.02.014
Westenberger et al., 2005). This method is based on the develop-
ment of a PLS2 calibration model with a calibration matrix with
one pure spectrum for each chemical component and a dummy
matrix as target matrix. It has been advocated as attractive because
it merges the easiness of obtaining a calibration set (just the pure
spectra of the components) and the exploratory and visualizing
properties of the PLS2 model. In this paper, it is demonstrated that
the PLS-Class approach is equivalent to performing classical least
squares (CLS) (Amigo et al., 2008; Gallagher, 2007; Martens and
Naes, 1984; Naes and Martens, 1984). This is shown both mathe-
matically and by means a practical example.

2. PLS-Classification in hyperspectral imaging and its
similarity with CLS

PLS-DA is a PLS2-based model, and therefore, the general model
form can be written as Eq. (1):

XB̂ = Y (1)

where X is an M × J matrix of calibration spectra with a corre-
sponding M × I class membership matrix Y and where residuals are

avoided for simplicity. The matrix B̂ holds the estimated regression
coefficients. The number of spectra used for calibration is M and
the number of spectral channels is J. The I columns of Y (a dummy
matrix) correspond to class memberships in classes i = 1, . . ., I. Rows
with a 1 in column i indicates membership in class i. The model

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:rb@life.ku.dk
dx.doi.org/10.1016/j.ijpharm.2009.02.014
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s applied to new data Xnew (e.g., all the spectra in a hyperspectral
mage) by using the estimated B̂ (Martens and Naes, 1989) (Eq. (2)):

ˆ new = XnewB̂ (2)

here Ŷnew is the estimated class membership matrix for the new
ata.

Because it can be difficult in hyperspectral imaging to iden-
ify classes a priori, a modification of the PLS-DA approach that
ses measured pure component spectra for X can be employed.
o avoid confusion with PLS-DA, this approach is called PLS-Class.
n PLS-Class, the calibration matrix now contains the pure compo-
ent spectra S (I × J) and Y is replaced with a corresponding dummy
atrix I (I × I) which is an identity matrix. The PLS-DA model then

ecomes

B̂PLS-Class = I (3)

The regression matrix B̂PLS-Class can then be estimated using a
LS algorithm. As there are typically only I samples in the data, it is
ot possible to calculate a PLS-Class model with more components
han the number of classes. Even when there are more samples than
he number of classes, the chemical rank will usually be I because
dditional samples are just replicates of the pure spectra. Analo-
ously, it is not meaningful to calculate the PLS-Class model with
ewer components than the number of classes as it would imply
hat the I analytes do not have distinct spectral features. Hence, the
LS-Class model is really not a low-rank regression model typical
f PLS. Note that the use of this PLS-Class model is only one specific
pplication of PLS-DA. Mostly, PLS-DA is used in applications where
ow-rank models are expected to outperform full rank models.

Eq. (3) is in the form of an inverse least squares (ILS) model and
ˆ

PLS-Class can be estimated using any ILS regression algorithm that
andles rank deficient systems of equations. This is because the

east squares estimate of B̂PLS-Class is

ˆ
PLS-Class = (ST S)

−1
ST I (4)

However, for spectroscopic applications, it is typical that J > I
and often J � I). Therefore the J × J matrix STS is at most rank I and
s not invertible. PLS is a common method for estimating B̂PLS-Class,
ut principal component regression (PCR) could easily be employed
s well. To see this, define the singular value decomposition of the

ure component spectra as

= U�VT (5)

here U(I × I) and V(J × J) are orthogonal matrices of left- and right-
ingular vectors respectively, and � (I × J) is a diagonal matrix.

Fig. 1. Unfolded sample
Pharmaceutics 373 (2009) 179–182

Because J > I, only the first I singular values are non-zero. Keeping
only the factors that correspond to non-zero singular values (and
considering that UTU is I) gives

ST S = V�UT U�VT = V�2VT (6)

Therefore, the pseudo-inverse is given by Eq. (7):

(ST S)
† = V�−2VT (7)

and the least squares estimate is

B̂PLS-Class = (ST S)
†
ST I = V�−2VT ST I = V�−2VT ST (8)

Eq. (8) is a PCR model, but because the weights identified for an I-
component PLS model span the same space as V, B̂PLS-Class identified
by PCR and PLS will be identical for this application.

Substituting Eq. (5) into the last expression of Eq. (8) gives

B̂PLS-Class = V�−2VT V�UT = V�−1UT = V�−1UT U�−1VT V�−1UT

= V�−1UT (U�VT V�UT )
−1 = ST (SST )

−1
(9)

Classical least squares regression is a well-known method for
calibration. It is very useful in hyperspectral analysis because of the
simple chemical interpretation it allows (Gallagher, 2007; Ravn et
al., 2008). The only requirement of CLS is that the pure spectra of
all the analytes must be available and that any mixture spectrum
can be described as a linear combination of these spectra. Once the
pure spectra are known (S) the concentrations in a hyperspectral
unfolded sample, xnew, can be easily calculated by direct regression
as is indicated in Eq. (10):

ŷnew = xnewST (SST )
−1

(10)

Comparing the last two equations (Eqs. (9) and (10)) it can be

noticed that the last expression of Eq. (9) [B̂PLS-Class = ST (SST )
−1

]
is the CLS estimate of B̂PLS-Class. Therefore, the CLS and PLS-Class
models are identical and will provide exactly the same results.

3. Example

3.1. Experimental
The data set used in this demonstration is described in detail in
Amigo and Ravn (2009) and Ravn et al. (2008). A five-compound
conventional pharmaceutical tablet formulation was used to pro-
duce the data set analysed (active pharmaceutical ingredient (API),

and pure spectra.
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Fig. 2. Upper: concentration surface for API predicted by PLS-Class and

.3%; microcrystalline cellulose, 20.0% (w/w); lactose, 71.5%; mag-
esium stearate, 0.75%; and talc, 1.5% (w/w)). Pure compound
eference tablets of the five components were also produced. The
ample selected was analysed on a NIR line mapping system (Spec-
rum Spotlight 350 FT-NIR Microscope, PerkinElmer, UK). An area
f 2 mm × 2 mm was analysed using pixel size 25 �m × 25 �m,
overing 6561 pixels in total. The spectrum of each pixel was col-
ected from wavelength region 7800–4000 cm−1 using a 16 cm−1

pectral resolution, providing a total of 476 wavelength channels
Fig. 1).

The PLS-Class calibration model was performed by using the
ure five spectra as X, and constructing a square diagonal dummy
atrix I with five classes, denoting as 1 the belonging of each

pectrum to each class (as in Eq. (4)). The prediction of the five
omponents of the tablet was performed with this PLS-Class model.
n the other hand, the CLS prediction was developed by direct

egression of Xnew by using the pure spectra matrix S.
PLS-Class algorithm was performed by using the PLS2 algo-

ithm implemented in PLS-Toolbox (Eigenvector Research Inc.).

LS for hyperspectral analysis algorithm from references (Amigo
t al., 2008) was used. This algorithm is freely available
t http://www.models.kvl.dk/users/jose manuel amigo/index.htm
February 2009). Both algorithms work under MatLab v. 7.5
MatLab(R)).
ethods. Bottom: CLS predictions against PLS-Class predictions for API.

3.2. Results and discussion

Only results for the prediction of the active pharmaceutical
ingredient are depicted in Fig. 2. The color denotes the intensity
for the concentration of API obtained for each pixel (moving from
deep blue, low concentration to light red, highest concentration).
As can be observed, the predictions are exactly the same for the two
methods and the same relationship was obtained for the other four
components. This result verifies that both methods offer the same
response.

In a practical application, the PLS-Class model involves two dif-
ferent steps (calculation of the calibration model, B̂PLS-Class, and
prediction of the concentrations of the new sample). CLS, on the
other hand, is typically performed by just a direct regression of the
new sample onto the pure spectra.

4. Conclusion

It has been demonstrated, mathematically and with an exam-

ple, that the PLS classification methodology (PLS-Class) provides
exactly the same results as CLS. There are many advantages in avoid-
ing the use of the PLS engine for building models as above. First
of all, the PLS-Class model is not a low-rank model and therefore
does not provide the usual benefits of PLS. More importantly, CLS is

http://www.models.kvl.dk/users/jose_manuel_amigo/index.htm
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very well-defined method and it offers theoretical and practical
ools, e.g., for calculating well-defined uncertainties of estimated
arameters (see Appendix A and Draper and Smith, 1981; Gallagher,
007).

While the comparison in this paper has been using hyperspectral
amples, the results are generic and valid for any type of data. The
se of the term PLS-Class model, though, is almost exclusively seen

n hyperspectral imaging.
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ppendix A. Theoretical background of the calculation of
ncertainty boundaries in CLS model

Having an unfolded hyperspectral sample, X (M × J), and the pure
pectra matrix, S (J × I), the CLS model to calculate the individual
oncentration of each component in each pixel can be expressed as
ollows:

ˆT = xT ST (SST )
−1

(A.1)

The errors in the individual measurements of x are assumed to
ominate the estimation error. The differential of Eq. (A.1) is

dŷT ) = (dxT )ST (SST )
−1

(A.2)

Therefore, the error covariance for the CLS model estimate of the
oncentrations is given by (Draper and Smith, 1981):

(dŷ dŷT ) = (SST )
−1

ST E(dx dxT )ST (SST )
−1

(A.3)

here E() is the expectation operator. For CLS, it is assumed that
he noise on each channel is of similar magnitude and uncorrelated,
herefore:

(dx dxT ) = �2I (A.4)

Substituting Eq. (A.4) into the variance of the estimation gives

(dŷ dŷT ) = �2(SST )
−1

SST (SST )
−1

(A.5)
(dŷ dŷT ) = �2(SST )
−1

(A.6)

Eq. (A.6) accounts for the final estimation of the uncertainty
n CLS models. Further information can be found in the supplied
eferences (Draper and Smith, 1981; Gallagher, 2007).
Pharmaceutics 373 (2009) 179–182
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